
期刊简介
《中国针灸》杂志以各级医务工作者,尤其是针灸临床、教育、科研人员以及针灸爱好者为读者对象。其办刊宗旨是:提高为主,兼顾普及,丰富多彩,实事求是。《中国针灸》杂志力求做到既能反映我国较高的针灸学术水平,又能满足基层医生的一般需要。因此,栏目设置多样,如,“临床研究”“实验研究”“针刺麻醉”,反映针灸发展的学术水平;“临床报道”“专病治验”“单穴效方”“医案选辑”栏目实用性强、教人以技术;“文献与史料”“综述”“百家园”及“理论探讨”反映学术争鸣与发展;“经络与腧穴”反映经络和腧穴的研究进展与临床应用情况;“针家精要”专门介绍老专家的经验;“专病笔谈”对一个病进行系统研究探讨,寻找治疗该病的规律;“教学园地”为教师们提供一个交流平台。另外,杂志还登载消息简讯,报道学术动态,介绍新的医疗仪器,刊登各种进修培训信息,向读者推荐新书等。 《中国针灸》杂志以其丰富的内容,融学术性与技术性为一体的特点,获得了广大读者的喜爱,年发行量一直在30万册以上。同时,由于她的权威性和发行量大,吸引了众多的针灸医务工作者踊跃投稿。目前,年收稿量在2000份左右,用稿率为25%。 《中国针灸》杂志坚持正确的办刊方向,树立严谨的工作作风,严肃认真地选用稿件、编辑加工;校对中采用三校互校、主编把关,错字率一直控制在万分之一以下,杂志的学术质量、编辑加工水平都达到了同类杂志的较高水平,得到了期刊界的好评。1995年,在国家中医药管理局举办的首届全国中医药优秀期刊评比中,我刊获得二等奖;在1999年进行的第二届评比中,获一等奖。经过多年的努力,本刊已经成为中国科技核心期刊,中国医学专业核心期刊,全国中医药优秀期刊,并于2002年被美国《化学文摘》(CA)收录,2005年被美国生物医学期刊文摘(MEDLINE)收录。
医学论文写作中Cox比例风险模型统计分析工具详解
时间:2024-03-22 09:55:13
Cox比例风险模型,又称Cox回归模型,是由英国统计学家D.R.Cox在1972年提出的一种半参数回归模型。该模型以生存结局和生存时间为应变量,可同时分析众多因素对生存期的影响,能分析带有截尾生存时间的资料,且不要求估计资料的生存分布类型。由于其优良的性质,该模型自问世以来,在医学随访研究中得到广泛的应用,是迄今生存分析中应用最多的多因素分析方法。
Cox比例风险模型基于比例风险假设,即任意两个个体的风险函数之比不随时间变化,或者说风险比保持恒定。该模型中的预测变量(或称为解释变量)可以是连续性变量,也可以是二分类或分类变量。
此外,Cox比例风险模型可用于估计生存函数和风险函数,并通过计算风险比(hazard ratio)来评估各因素对生存时间的影响程度。在实际应用中,该模型还可用于比较不同治疗方法的疗效差异、预测患者的生存时间等。
当研究某种疾病患者的生存时间及其与各种影响因素的关系时,Cox比例风险模型是一个常用的统计分析工具。以下是一个简化的实例来说明Cox比例风险模型的应用。
研究目的:评估某种新药物对肺癌患者生存时间的影响,同时考虑其他潜在的影响因素,如患者的年龄、性别和癌症分期。
数据收集:收集一组肺癌患者的数据,包括患者的生存时间(从确诊到死亡或研究结束的时间)、是否接受新药物治疗(是/否)、年龄、性别和癌症分期等信息。
Cox比例风险模型构建:
因变量:生存时间(通常表示为“时间”)和生存状态(通常表示为“状态”,其中1表示事件发生,即死亡;0表示被删失,即研究结束时患者仍存活或失访)。
自变量:
治疗组别(接受新药物治疗 vs. 未接受新药物治疗)
年龄(连续变量或分类变量)
性别(男性 vs. 女性)
癌症分期(I期、II期、III期、IV期)
模型假设:Cox比例风险模型假设在任意时间点,接受新药物治疗的患者与未接受新药物治疗的患者的风险比(hazard ratio)是恒定的,即不随时间变化。同样,其他协变量的效应也是比例性的。
模型拟合与结果解释:使用统计软件(如R、SAS、SPSS等)拟合Cox比例风险模型,并输出各协变量的估计系数、风险比及其95%置信区间。风险比大于1表示该因素增加死亡风险,小于1表示降低死亡风险。例如,如果新药物治疗的估计风险比为0.75(95% CI: 0.60-0.95),则表明接受新药物治疗的患者死亡风险降低了25%(相对于未接受新药物治疗的患者)。
实例分析:
假设我们收集了100名肺癌患者的数据,并使用Cox比例风险模型进行分析。结果显示,新药物治疗、年龄、性别和癌症分期均对生存时间有显著影响。具体来说:
接受新药物治疗的患者的死亡风险降低了30%(风险比=0.70,95% CI: 0.50-0.98)。
年龄每增加10岁,死亡风险增加20%(风险比=1.20,95% CI: 1.05-1.37)。
男性患者的死亡风险是女性患者的1.5倍(风险比=1.50,95% CI: 1.00-2.25)。
癌症分期越高(即病情越严重),死亡风险也越高(例如,IV期患者的死亡风险是I期患者的3倍)。
这些结果有助于我们了解各种因素对肺癌患者生存时间的影响,并为临床决策提供支持。然而,需要注意的是,Cox比例风险模型的假设在实际应用中可能不成立,因此需要进行适当的模型诊断和验证。